
Programmation fonctionnelle
Poly d’accompagnement du cours

Philippe Roussille

3iL 2A 2026

1 Introduction
Ce document accompagne le cours et les travaux pratiques de programmation
fonctionnelle.

Il ne s’agit pas d’un manuel de syntaxe F#, mais d’un support de raisonne-
ment.
L’objectif est de comprendre ce que change réellement la programmation
fonctionnelle dans la manière de concevoir, lire et écrire du code.

Ce cours vise avant tout un changement de posture mentale : - passer d’un
programme vu comme une suite d’actions, - à un programme vu comme une
transformation de données.

Les exemples sont majoritairement en F#, mais les idées sont directement
transférables vers Java moderne (lambdas, Streams).

2 Le bagage à vider
La programmation fonctionnelle est un paradigme, c’est-à-dire une manière
structurée de penser les programmes.

Elle remet en question plusieurs réflexes courants :

— penser un programme comme une suite d’instructions,
— modifier des variables au fil du temps,
— raisonner avec de l’état global,
— utiliser l’héritage comme abstraction principale,
— gérer l’absence avec null,
— considérer les boucles comme la structure naturelle de tout calcul.

Ces réflexes ne sont pas faux, mais ils rendent le raisonnement difficile lorsque
les programmes deviennent complexes.

1



Programmation fonctionnelle
Poly d’accompagnement du cours

3iL 2A 2026

3 Programme comme suite d’actions : un réflexe
à questionner

Dans le paradigme impératif, un programme est souvent conçu comme :

— une séquence d’instructions,
— exécutées dans un ordre précis,
— modifiant un état au fil du temps.

Pour comprendre un tel programme, il faut :

— simuler l’exécution,
— suivre les mutations,
— garder en mémoire l’état courant.

Ce raisonnement est temporel, souvent global, et fragile face aux évolutions.

4 Changement de modèle mental
4.1 Programme = expression
En programmation fonctionnelle, un programme est vu comme une expression.

Une expression :

— décrit un calcul,
— produit une valeur,
— peut être remplacée par son résultat.

En F#, de nombreuses constructions sont des expressions :

let x = if a > b then a else b

Ici, le if produit une valeur. Il n’existe pas de branche “qui ne renvoie rien”.

4.2 Fonction = unité de raisonnement
Une fonction n’est pas une procédure qui agit sur un état global. C’est une
transformation de données.

let carre x = x * x

Cette fonction :

— dépend uniquement de son paramètre,
— ne modifie rien à l’extérieur,
— est compréhensible isolément.

Le raisonnement devient local et fiable.

5 Fonctions pures et effets de bord
5.1 Fonctions pures
Une fonction pure :

2



Programmation fonctionnelle
Poly d’accompagnement du cours

3iL 2A 2026

— dépend uniquement de ses paramètres,
— renvoie toujours le même résultat pour les mêmes entrées,
— ne produit aucun effet observable à l’extérieur.

let somme a b = a + b

Une fonction pure peut être lue comme une équation mathématique.

5.2 Effets de bord
Un effet de bord est toute interaction avec l’extérieur :

— affichage,
— lecture de fichier,
— génération aléatoire,
— dépendance à l’heure.

let afficher x =
printfn "%d" x

Cette fonction a un effet de bord (affichage). L’objectif n’est pas de les supprimer,
mais de les isoler.

6 Valeurs et immutabilité
En programmation fonctionnelle, on raisonne avec des valeurs immuables.

let x = 10
let y = x + 1

Ici, x ne change jamais. On calcule une nouvelle valeur au lieu de modifier
l’ancienne.

L’immutabilité :

— simplifie les invariants,
— évite les effets cachés,
— rend le code plus robuste.

7 Données et fonctions
Les données décrivent un état. Les fonctions décrivent des transformations.

type Personne = {
nom : string
age : int

}

let estMajeur p = p.age >= 18

Les données sont passives, le comportement est porté par les fonctions.

3



Programmation fonctionnelle
Poly d’accompagnement du cours

3iL 2A 2026

8 Fonctions comme valeurs
Une fonction est une valeur à part entière.

let appliquerDeuxFois f x =
f (f x)

appliquerDeuxFois carre 3 // 81

Ici, une fonction est passée en paramètre. C’est le principe des fonctions d’ordre
supérieur.

9 Itération sans boucles
9.1 map

map applique une fonction à chaque élément d’une collection.

let nombres = [1; 2; 3; 4]
let carres = List.map carre nombres

Résultat :

[1; 4; 9; 16]

Le parcours est implicite. Seule la transformation est exprimée.

9.2 filter

filter sélectionne les éléments qui vérifient un prédicat.

let pairs = List.filter (fun x -> x % 2 = 0) nombres

Résultat :

[2; 4]

10 Le pipeline de fonctions (|>)
Le pipeline permet de lire le code de gauche à droite, comme une suite de
transformations.

let resultat =
nombres
|> List.map carre
|> List.filter (fun x -> x > 5)

Lecture :

— partir de nombres,
— calculer les carrés,
— garder ceux strictement supérieurs à 5.

Le pipeline améliore fortement la lisibilité.

4



Programmation fonctionnelle
Poly d’accompagnement du cours

3iL 2A 2026

11 fold : le modèle général
fold permet de réduire une collection à une seule valeur.

let somme =
List.fold (fun acc x -> acc + x) 0 nombres

Ici :

— acc est l’accumulateur,
— 0 est la valeur initiale,
— l’état intermédiaire est explicite.

12 Récursion et récursion terminale
12.1 Récursion simple
let rec somme n =

if n = 0 then 0
else n + somme (n - 1)

Cette définition est logique, mais non terminale.

12.2 Récursion terminale
let somme n =

let rec aux acc n =
if n = 0 then acc
else aux (acc + n) (n - 1)

aux 0 n

L’accumulateur rend l’état explicite, ainsi, le compilateur peut optimiser.

13 Types : un outil de raisonnement
Les types servent à exprimer des invariants.

let longueur (s : string) : int =
s.Length

La signature suffit à comprendre la fonction.

13.1 Types produits
13.1.1 Tuples

let point = (3, 4)

Type :

int * int

5



Programmation fonctionnelle
Poly d’accompagnement du cours

3iL 2A 2026

13.1.2 Records

type Point = { x : int; y : int }

Les records sont préférables pour le code métier.

13.2 Types sommes
type Direction =

| Nord
| Sud
| Est
| Ouest

Une valeur est exactement un cas parmi plusieurs.

13.3 Option

let chercher x liste =
List.tryFind ((=) x) liste

Le résultat est de type int option.

13.4 Result

let diviser a b =
if b = 0 then Error "division par zéro"
else Ok (a / b)

L’erreur est visible dans le type.

14 Pattern matching
Le pattern matching permet de raisonner par cas, de façon exhaustive.

let decrireDirection d =
match d with
| Nord -> "haut"
| Sud -> "bas"
| Est -> "droite"
| Ouest -> "gauche"

14.1 Déstructuration
let norme p =

match p with
| { x = x; y = y } -> sqrt (float (x*x + y*y))

La structure des données guide la logique.

15 Robustesse, lisibilité et complexité
Un code fonctionnel bien écrit est :

6



Programmation fonctionnelle
Poly d’accompagnement du cours

3iL 2A 2026

— lisible sans exécuter,
— robuste grâce aux types,
— explicite sur sa complexité (nombre de parcours).

Les optimisations viennent après la clarté.

16 Transfert vers Java moderne
Les mêmes idées existent en Java :

— lambdas,
— Streams,
— map, filter, reduce.

La syntaxe change, mais la posture de raisonnement reste valable.

17 Conclusion
La programmation fonctionnelle apporte :

— un raisonnement plus local,
— moins d’état caché,
— un code plus sûr et plus lisible.

7


	Introduction
	Le bagage à vider
	Programme comme suite d’actions : un réflexe à questionner
	Changement de modèle mental
	Programme = expression
	Fonction = unité de raisonnement

	Fonctions pures et effets de bord
	Fonctions pures
	Effets de bord

	Valeurs et immutabilité
	Données et fonctions
	Fonctions comme valeurs
	Itération sans boucles
	map
	filter

	Le pipeline de fonctions (|>)
	fold : le modèle général
	Récursion et récursion terminale
	Récursion simple
	Récursion terminale

	Types : un outil de raisonnement
	Types produits
	Tuples
	Records

	Types sommes
	Option
	Result

	Pattern matching
	Déstructuration

	Robustesse, lisibilité et complexité
	Transfert vers Java moderne
	Conclusion

